Mostrando postagens classificadas por data para a consulta disbiose. Ordenar por relevância Mostrar todas as postagens
Mostrando postagens classificadas por data para a consulta disbiose. Ordenar por relevância Mostrar todas as postagens

sexta-feira, 2 de setembro de 2022

Intolerância histaminérgica - Aspectos nutrológicos: como o médico nutrólogo pode te auxiliar?

Intolerâncias alimentares

As intolerâncias alimentares podem ser a vários alimentos/grupos/substâncias específicas. A mais comumente abordada é a intolerância à lactose. Recentemente tem se falado também bastante sobre a intolerância à frutose, já que os métodos utilizados para fechar o diagnóstico apresentam alta taxa de falsos positivos. 

Temos ainda intolerância a rafinose, sacarose... e também à Histamina. Geralmente são sintomas gastrointestinais funcionais e que muitas vezes não encontramos achados laboratoriais que fechem o diagnóstico. Ou seja, são sintomas gastrointestinais funcionais, crônicos e muitas vezes inexplicáveis, que deixam o paciente/médico perdidos e sem um norte. 

Se na intolerância à lactose o paciente apresenta deficiência da lactase, na intolerância histaminérgica há deficiência da enzima diamino-oxidase (DAO) no intestino, o que ocasionada  uma sensibilidade aos níveis normais ou mesmo baixos de histamina nos alimentos.

Mas afinal, o que é a histamina?

A histamina do nosso corpo é um composto nitrogenado orgânico, de formula molecular C5H9N3 e nome IUPAC 2-(3H-imidazol-4-il)-etanamina. Esta amina é originada a partir da perda de um grupo carboxila do aminoácido histidina, processo conhecido com descarboxilação. Esta amina foi descrita pela primeira vez em 1910 quando um grupo de pesquisadores a isolou do fungo Claviceps purpúrea. 

Em mamíferos, a histamina está relacionada com diversas funções biológicas como por exemplo a contração da musculatura lisa, principalmente do intestino e brônquios, vasodilatação e aumento da permeabilidade de vasos, aumento da secreção de mucosas, ciclo claro-escuro e também como neurotransmissores. Consequentemente, a histamina pode estar envolvida com quadros de taquicardias, arritmias, variações de pressão sanguínea, aumento de secreções gástricas, isquemia intestinal e até mesmo na angiogênese de tumores.

Um dos principais envolvimentos da histamina é sua secreção por células imunes após o contato com antígenos, o que muitas vezes é relacionado com reações alérgicas. Quando anticorpos do tipo IgE são ativados por seus respectivos ligantes (antígenos geralmente alérgenos), ele ganha a capacidade de se ligar em mastócitos e, estas células, que reservam grandes quantidades de histamina em seu interior, são lisadas e liberam esta histamina. Esta liberação, no local ou na corrente sanguínea, permite que as funções biológicas da histamina aconteçam. Caso a degradação da histamina não aconteça de maneira correta, ou caso o estímulo alérgeno esteja constantemente presente e, portanto, constantemente ativando os mastócitos a liberar a histamina, esse processo é chamado de resposta alérgica.

Nesse sentido, em 1932, a histamina foi descrita como grande mediadora de reações anafiláticas devido sua participação da contração da musculatura lisa e alterações da pressão sanguínea. Estas respostas anafiláticas têm grande relevância médica, pois tem progressão bastante rápida e colocam o indivíduo em grande risco de vida. Alguns sintomas da reação anafilática são: coceira, angioedema (inchaço), hipotensão, estresse respiratório e desmaio. Após o contato com o agente alergênico, o que podem ser bem variados, desde alimentos, bebidas, passando por produtos químicos ou mesmo picadas ou contato com outros agentes da natureza (como pólen por exemplo), o indivíduo pode apresentar a reação anafilática em poucos minutos. O tratamento para esta reação deve acontecer o mais rápido possível, uma vez que estes sintomas podem ser bastante graves e inclusive podem levar ao óbito.

Diversas células têm capacidade de sintetizar a histamina, como: mastócitos, basófilos, plaquetas, neurônios histaminérgicos e células enterocromafins. Por isso, a presença da histamina acontece em praticamente o corpo todo. No entanto, a prevalência é muito maior em regiões de contato com o “meio externo”, como na pele e nos tratos respiratório e gástrico.

No organismo sua degradação se dá através da ação de duas enzimas, principalmente. A primeira é a histaminase (com a sigla em inglês, DAO - diamino-oxidase), que através da desaminação oxidativa metaboliza a histamina. 

Já a segunda, a histamina-N-metilltransferase (HNMT) age metilando o anel de carbono da estrutura da molécula. Dependendo da região em que se encontra a histamina, uma dessas enzimas será responsável por cataboliza-la: estando no meio intracelular, ou seja, no citoplasma celular, a histamina será degradada com HNMT, enquanto que estando na região extracelular, ou seja, no plasma sanguíneo ou na região órgão-específica, ela sofrerá ação da enzima DAO. 

A degradação da histamina tem fundamental importância, tal qual sua normal secreção. Indivíduos com problemas na sua síntese (síntese excessiva) ou na sua degradação (problemas na degradação) desenvolvem intolerância a histamina, doença com sintomas semelhantes aos sintomas de alergias 

A histamina dos alimentos

Existem várias aminas biogênicas encontradas em alimentos e bebida: histamina, a tiramina, a putrescina e a cadaverina são algumas delas. Ou seja, além da histamina produzida pelo nosso corpo, podemos ter ainda a Histamina presente em alguns alimentos e elas são produzidas por fermentação de bactérias/fungos.

O acúmulo desses compostos nos alimentos é resultado da transformação de aminoácidos por microrganismos e depende de vários fatores, como a disponibilidade dos aminoácidos precursores e condições ambientais favoráveis ao crescimento e/ou à atividade da descarboxilase bacteriana. 

Portanto, o processo de fabricação, a limpeza dos materiais, a composição microbiana e a fermentação influenciam a quantidade de histamina presente no alimento ou bebida. Dentre os alimentos que apresentam quantidade significativa de histamina temos os abaixo. Porém, cada paciente reage de uma maneira e não é a todos os alimentos que os pacientes reagem. 

Vegetais:
Espinafre
Tomate (e molho de tomate ou ketchup)
Berinjela

Leguminosas:
Lentilhas
Grão de bico
Feijões
Soja

Oleaginosas e sementes:
Castanha de caju
Nozes
Amendoim
Avelã
Amêndoas
Pinhão
Semente de girassol
Gergelim

Leite e derivados:
Queijos curados e semi- curados
Queijos ralados
Queijo azuis
Queijos processados
Queijos mofados
Kefir de leite
Iogurte

Frutas:
Morango
Ameixa
Banana
Figo
Kiwi
Melancia
Goiaba
Manga
Mamão
Abacate
Framboesa
Frutas cítricas: Laranjas, limões, tangerina
Frutas secas

Doces e adoçantes:
Cacau
Adoçantes artificiais: Sucralose
Alcaçuz
Extrato de malte

Temperos e especiarias:
Temperos artificiais
Cominho
Curry
Mostarda
Ketchup
Maionese
Páprica picante
Pimentas
Picles
Conservas
Alcaparras
Vinagre de vinho tinto e
branco
Vinagre balsâmico
Gengibre
Canela

Farinhas e grãos:
Gérmen de trigo
Trigo sarraceno
Malte
Centeio
Cevada

Fermentados:
Chucrute
Molho de soja (Shoyu)
kefir
Kombuchá
Iogurte
Leite fermentado

Carnes:
Carnes processadas
Linguiça
Salsicha
Salame
Presunto
Mortadela
Bacon
Carne de porco
Cavala
Atum
Anchova
Peixes enlatados
Bacalhau
Frutos do mar
Clara de ovo crua
Carne seca (charque ou paçoca)
Vísceras
Carnes e peixes defumados

Bebidas:
Leite de soja
Leite de arroz
Café
Suco de laranja
Todas as bebidas alcóolicas: cerveja, vinho, gin, vodca
Bebidas energéticas
Chá preto
Chá verde
Chá mate

Outros:
Alga e derivados de alga
Cogumelos
Levedura nutricional
Azeitonas
Picles
Vinagre
Azeite Balsâmico
Alimentos em conserva
Enlatados
Aditivos alimentares

A União Europeia permite o conteúdo de histamina nos alimentos até um máximo de 200 mg/kg  em peixes frescos e 400 mg/kg em produtos do mar. Vários autores propuseram que o álcool, outras aminas biogênicas, e alguns medicamentos, podem ter um efeito potencializador sobre a toxicidade da histamina. E algo que é super comum no consultório é o paciente contando que vários sintomas foram desencadeados após ingerir vinho acompanhado de alimentos ricos em histamina. Resultado: culpam o vinho mas na verdade foi apenas uma potencialização.

E como o corpo quebra essa histamina ?

Como já explicado acima, temos 2 maneiras de metabolizá-la. A primeira através da histamina-N-metiltransferase (HNMT), proteína citosólica responsável pela inativação da histamina intracelular, expressa em uma ampla variedade de tecidos humanos. A segunda pela DAO é uma proteína armazenada em estruturas vesiculares da membrana plasmática responsável pela degradação da histamina extracelular. Está presente nas vilosidades intestinais, aumentando progressivamente do duodeno até o íleo. Na intolerância a histamina, a enzima intestinal DAO tem uma capacidade reduzida de metabolizar e degradar histamina. 

E por que o corpo começa a não tolerar alimentos ricos em histamina?

Até o momento, sabe-se que a deficiência de DAO pode estar relacionada a fatores genéticos, farmacológicos ou patológicos (desordens inflamatórias, degenerativas e intestinais). Uma hipótese recente sugere que alterações na diversidade da microbiota intestinal podem contribuir para o desenvolvimento de intolerância à histamina.

O que o paciente apresenta de sintoma na intolerância à Histamina?

As manifestações clínicas de intolerância à histamina consistem em uma ampla gama de sintomas gastrointestinais e extra intestinais inespecíficos, devido à distribuição dos quatro receptores de histamina em diferentes órgãos e tecidos do corpo.

Estudo mostrou que as manifestações mais frequentes são:
  • Distensão abdominal observada em 92% dos pacientes,
  • Plenitude pós-prandial, 
  • Diarreia, 
  • Dor abdominal,
  • Constipação (55-73%).
Ou seja, facilmente se confunde com a intolerância aos FODMAPS (texto aqui no blog sobre o tema)

Os pacientes podem ainda apresentar sintomas extra-intestinais, tais como:
  • Tonturas, 
  • Dores de cabeça
  • Palpitações, 
  • Sintomas respiratórios (congestão nasal, coriza ou prurido no nariz),
  • Dermatológicos (rubor especialmente da cabeça e do peito).
Composição da microbiota e a intolerância histaminérgica

Para caracterizar a composição da microbiota intestinal de pessoas com intolerância à histamina e comparar com a microbiota de indivíduos saudáveis, Sánchez-Pérez e colaboradores desenvolveram um estudo recente, com 26 participantes, sendo 12 mulheres. 

Os participantes foram divididos em 2 grupos: intolerância a histamina (grupo HIT) e controle (sem intolerância). O grupo HIT foi composto por 12 mulheres de 21 a 65 anos e IMC médio de 23,7Kg/m²; enquanto o grupo controle foi composto de 14 participantes homens e mulheres adultos, com IMC médio de 22,2Kg/m².

O diagnóstico do grupo HIT foi realizado pela presença de 2 ou mais sintomas descritos por Maintz e Novak (2007), e por resultados negativos para IgE específica para alérgenos alimentares. Foram avaliadas as características demográficas e os sintomas clínicos, em todos participantes. Para a análise da microbiota intestinal e da concentração de histamina, amostras de fezes foram auto-colhidas em frascos estéreis e armazenadas a -80 ◦C até suas análises. O sequenciamento da microbiota intestinal foi avaliado pela técnica 16S rRNA (região V3-V4) e os dados foram analisados pelo banco de dados EzBioCloud.

No grupo HIT, queixas gastrintestinais e neurológicas foram relatadas por 83% dos participantes, seguidos por queixas dermatológicas (50%) e respiratórias (33%). No geral, os sintomas mais frequentemente relatados foram distensão abdominal e dor de cabeça, seguidos de flatulência, diarreia, azia e dores abdominais, musculares e articulares. A atividade plasmática da DAO foi deficiente (<10 U/mL) em 10 dos 12 participantes do grupo HIT.

A microbiota intestinal dos grupos HIT e controle foi analisada e comparada em termos de filo, família, gênero e espécie. A presença de disbiose intestinal foi observada no grupo HIT, que, em comparação com ao grupo controle, apresentou menor proporção de bactérias relacionadas à saúde intestinal: Prevotellaceae, Ruminococcus, Faecalibacterium e Faecablibacterium prausnitzii. Grupo HIT também apresentou abundância significativamente maior de bactérias histaminogênicas, incluindo os gêneros Staphylococcus e Proteus, gêneros não identificados pertencente à família Enterobacteriaceae, e as espécies Clostridium perfringens e Enterococcus fecalis.

Os autores concluíram que a maior abundância de bactérias histaminogênicas favoreceu o acúmulo de altos níveis de histamina no intestino e foi associado com efeitos adversos da intolerância. Contudo, as limitações do estudo devem ser levadas em conta em estudos futuros que visem elucidar a relação entre disbiose intestinal e intolerância à histamina.

Como diagnosticamos?

Apesar dos avanços significativos na compreensão da intolerância à histamina, não há consenso sobre a padronização do diagnóstico. 

A combinação dos critérios diagnósticos atualmente em uso inclui o aparecimento de manifestações clínicas típicas e a exclusão de outras condições patológicas gastrointestinais e relacionadas a histamina.

Inicialmente é necessário descartar outras causas de potenciais sintomas associados ao aumento da histamina plasmática. 

Considera-se necessário realizar teste de alergia cutânea intradérmica para descartar a sensibilização por IgE causada por alergia alimentar, além de dosar a triptase plasmática para excluir uma mastocitose sistêmica subjacente. Também é importante saber se o paciente está tomando algum medicamento com um possível efeito inibitório sobre a atividade DAO.

Vários exames complementares não validados também foram propostos por vários autores com o objetivo de obter um marcador para confirmar o diagnóstico.

Se esses resultados forem negativos, o aparecimento de dois ou mais sintomas típicos de intolerância à histamina e sua melhora ou remissão após o seguimento de uma dieta com baixo teor de histamina, confirma o diagnóstico de intolerância à histamina.

Anamnese
• Apresentando ≥ 2 sintomas de intolerância à histamina
• Afastar alergias alimentares (teste cutâneo de picada) e mastocitose sistêmica (triptase)
• Afastar outras patologias gastrointestinais concomitantes
• Afastar drogas inibidoras de DAO

Exclusão da histamina
• Acompanhamento de uma dieta com baixo teor de histamina (4-8 semanas)
• Registro completo de 24 horas de consumo de alimentos e sintomatologia

• Remissão ou melhora dos sintomas

Exames complementares
• Determinação da atividade enzimática diamina oxidase (DAO)  no plasma ou biópsia intestinal
• Teste de desafio/provocação de histamina
• Identificação de polimorfismos genéticos (SNPs)
• Determinação de biomarcadores de histamina

Quais o tratamento?

Há 3 opções de tratamento. 

1) Dieta pobre em histamina

Consiste na principal forma de prevenir a intolerância à histamina, iniciando pela exclusão de alimentos com maior teor de histamina, e conforme a resposta ajuste para dietas mais restritivas.

2) Nas crises podemos lançar mão da utilização de drogas anti-histamínicas. 

3) Uso da DAO

Se na intolerância á lactose utilizamos a lactase, aqui podemos utilizar a Histaminase ou DAO. A suplementação  oral com DAO exógena poderia facilitar a degradação da histamina na dieta. Ao melhorar a atividade DAO intestinal possibilitaria dietas menos restritivas, mantendo alívio sintomático.

Coexistência de Intolerância histaminérgica com outras condições

Como descobri que era intolerante à histamina? Sempre apresentei reação a alimentos específicos. Se início recebi o diagnóstico de síndrome de alergia perioral por uma professora de nutrologia, pois sempre que ingeria alimentos cítricos a minha língua apresentava ardor, ficava ferida e apresentava prurido perioral e nasal. Fiz os testes alérgicos de IgE específica e vieram negativos. Depois suspeitamos que pudesse ser intolerância à FODMAP, porém nunca apresentei grandes quantidades de gases, distensão abdominal significativa, diarréia ou constipação. Mesmo com dieta Low FODMAP feita pelo meu nutricionista eu continuava apresentando sintomas com: Morango, laranja, banana, kiwi, uva, abacaxi, frutas secas, melancia, oleaginosas, cacau, lácteos, trigo, ketchup, espinafre, kombuchá, shoyu álcool, morango e quanto ingeria leveduras medicinais. 

Em 2019 apresentei um quadro de poliartralgia após uma viagem. Um amigo ortopedista (Dr. Maurício Morais) solicitou uma série de exames e todos vieram negativos. Quando foi me examinar viu que eu tinha muita flexibilidade nas articulações e postulou o diagnóstico de hipermobilidade articular. Depois disso foi por minha conta. Comecei a pesquisar e descobri que existe um espectro dentro de uma síndrome genética chamada Ehlers Danlos (SED).

Foi então que descobri que na SED pode ocorrem alguns sintomas concomitantes. Como a Disautonomia, os POTS, Ativação mastocitária, Intolerância histaminérgica. No homem a testosterona tende a deixar os quadros mais leve que em mulheres. Faço parte de um grupo de médicos portadores de SED e a diferença na apresentação dos quadros é nítida. Os homens apresentam bem menos fadiga (eu não tenho), menos disautonomia (tenho pouquíssimo, só quando ingiro o que não posso), POTS (taquicardia postural, ou seja, o paciente fica em pé a frequência cardíaca aumenta, também não tenho). Mas podem apresentar mais ativação mastocitária e mais intolerância histaminérgica. Nos homens também a testosterona parece proteger as articulações, lesionamos bem menos que as mulheres.


Caso você leitor tenham desconfie que possa ter algum desses quadros, sugiro que sigam os seguintes perfis de médicas portadores de SED:
  • Dra. Kaliny Cristine Trevezani de Souza - Médica Pediatra - https://www.instagram.com/drakalinytrevezani/ (Atende crianças com SED)
  • Dra. Maike Heerdt - Médica Fisiatra  - https://www.instagram.com/dramaikeheerdt/ (Atende adultos com SED).
  • Dra. Joseane Brostel Figueiredo David (Médica SEDiana) CRM: 18.850.. Especialidade: Clínica Médica e Cardiologia (atende os casos de disautonomia). No momento está atendendo somente por Telemedicina. Fone do consultório para agendamento online: (61) 9207-9809. Instagram: @drajoseane.brostel
  • Dra. Thania Rossi (Médica SEDiana). CRM 141717 SP. RQE-NCR 57605/ DOR | RQE: 576081. Especialidade: Neurocirurgia/Médica Da Dor. Atende presencial na Rua Demóstenes 627 Conj 73, Campo Belo - Sao Paulo - SP. Atende por telemedicina.Fone do consultório para agendamento online ou presencial: (11) 97784-8639. Redes sociais: @drathaniarossi_neuro
  • Dr. Björn Erik Peter Dreisbach. CRM-MG 72953. Atende em Belo Horizonte e por telemedicina. Fone do consultório para agendamento online ou presencial: (31) 8274-4948. 
  • Dr. Pedro Paulo Prudente. CRM-GO 12744 RQE 13637/ 9352. Especialidade: Medicina do esporte e Acupuntura. Área de atuação em Dor. Atende presencial na Av. Assis Chateubriand, na Clinica Supere. Fone para agendamento online ou presencial: (62) 98132-0244 (clique aqui). https://tratamentodor.com.br/bio/
Suplementos na Síndrome de Ehlers Danlos e Intolerância histaminérgica

Tenho recibo alguns pacientes com SED, SED combinado a intolerância histaminérgica e outros com intolerância histamimnérgica pura. Então tive que procurar na literatura o que pode melhorar ou piorar os quadros. 

Além da dieta pobre em histamina, tenho visto que alguns nutrientes e compostos bioativos podem promover uma melhora dos sintomas. Os mecanismos ainda não são bem elucidados, afinal a literatura é bem fraca quando se trata do tema. 

  • Quercetina: é um polifenol com leve ação antihistaminica, anti-inflamatório e estudos in vitro mostram ação estabilizadora de mastócitos. Presente em inúmeros alimentos: cebola, maçã, salsa, sálvia, azeite, uvas, mirtilos, blueberries.
  • Vitamina C: estimula o aumento da produção da enzima DAO, que degrada histamina. Alguns estudos associam níveis de vitamina C circulantes com níveis de histamina. Presente em frutas cítricas pobres em histamina: caju, acerola.
  • Cobre: cofator da enzima DAO. Sem ele a enzima não atua de forma adequada. Fontes: carne.
  • Vitamina B6: cofator da enzima DAO. Níveis adequados tem relação com melhora dos sintomas de intolerância à histamina;
  • Luteolina: mesmo efeito da quercetina, diminuindo inflamação e estabilizando mastócito nos estudos in vitro.
Suplementos que podem ser deletérios para alguns portadores de intolerância histaminérgica:
  • Extrato de leveduras: pelo alto nível de histamina exógena, que pode acumular no intestino gerando sintomas em indivíduos sensíveis
  • Colágenos e caldo de osso: os colágenos são fonte de histidina, que em contato com a microbiota pode levar à produção de histamina
  • Algumas proteínas em pó: Dependendo da composição e forma da proteína pode aumentar a produção de histamina pelas bactérias da microbiota
  • Conservantes como benzoatos, sulfitos, sorbatos e glutamato
  • Suplementos fermentados
  • Suplementos com base alcóolica: o álcool é um liberador de histamina e inibidor da DAO
  • Probióticos
  • Spirulina
  • Vitamina B3 na forma de ácido nicotínico

Referências bibliográficas

1) Sánchez-Pérez, S.; Comas-Basté, O.; Duelo, A.; Veciana-Nogués, M.T.; Berlanga, M.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Intestinal Dysbiosis in Patients with Histamine Intolerance. Nutrients 2022, 14, 1774. https://doi.org/10.3390/nu14091774

2) Andrade VLA. Intolerância a Histamina. In Andrade, VLA. Manual de Terapêutica em Gastrenterologia e Hepatologia. Capítulo 85. 

3) Comas-Basté O, Sánchez-Pérez S, Veciana-Nogués MT, Latorre-Moratalla M, Vidal-Carou MDC. Histamine Intolerance: The Current State of the Art. Biomolecules. 2020;10(8):1181. Published 2020 Aug 14;10(8):1181. doi: 10.3390/biom10081181.

4) Schnedl WJ, Enko D. Histamine Intolerance Originates in the Gut. Nutrients. 2021;13(4):1262. Published 2021 Apr 12. doi:10.3390/nu13041262.

5) Tuck Ca, Biesiekierski J, Schmid-Grendelmeier P and Pohl D. Food Intolerances. Nutrients. 2019;11:1684. doi:10.3390/nu11071684 

6) https://pebmed.com.br/intolerancia-a-histamina-fique-atento-a-esta-condicao-patologica/#

quarta-feira, 6 de julho de 2022

Intolerância histaminérgica e síndrome de ativação mastocitária - Aspectos nutrológicos

Em 2014 postei no meu instagram sobre FODMAPS, que os médicos ainda ouviriam falar muito sobre aquela dieta. Na época eu fazia a pós de Nutrologia da ABRAN e pouquíssimos profissionais estavam antenados sobre o que estava ocorrendo na universidade de Monash na Austrália. Hoje é uma abordagem mundialmente reconhecida, mas poucos nutricionais sabem trabalhar da forma correta. 

Hoje venho trazer para vocês um tema que vocês ouvirão falar muito nos próximos anos. Intolerância histaminérgica e síndrome de ativação mastocitária. São condições que comumente ocorrem em indivíduos com hipermobilidade articular e/ou com Taquicardia postural, e/ou disautonomia. 


Dentro da Ativação mastocitária (SAM), pode existir a intolerância à histamina (IH). Nos próximos meses falarei mais sobre o tema e o que se tem visto na literatura. Hoje trago uma postagem do pessoal do Ganep sobre a microbiota e a intolerância histaminérgica.

Intolerância à histamina pode ser influenciada pela microbiota?

A histamina é uma amina biogênica heterocíclica presente em diversos alimentos ou produzida por atividade da microbiota intestinal. A intolerância à histamina ocorre especialmente pela deficiência de diamina oxidase (DAO), enzima chave para a degradação de histamina no epitélio intestinal. Até o momento, sabe-se que a deficiência de DAO pode estar relacionada a fatores genéticos, farmacológicos ou patológicos (desordens inflamatórias, degenerativas e intestinais). Uma hipótese recente sugere que alterações na diversidade da microbiota intestinal podem contribuir para o desenvolvimento de intolerância à histamina.

Para caracterizar a composição da microbiota intestinal de pessoas com intolerância à histamina e comparar com a microbiota de indivíduos saudáveis, Sánchez-Pérez e colaboradores desenvolveram um estudo recente, com 26 participantes, sendo 12 mulheres. Os participantes foram divididos em 2 grupos: intolerância a histamina (grupo HIT) e controle (sem intolerância). O grupo HIT foi composto por 12 mulheres de 21 a 65 anos e IMC médio de 23,7Kg/m²; enquanto o grupo controle foi composto de 14 participantes homens e mulheres adultos, com IMC médio de 22,2Kg/m².

O diagnóstico do grupo HIT foi realizado pela presença de 2 ou mais sintomas descritos por Maintz e Novak (2007), e por resultados negativos para IgE específica para alérgenos alimentares. Foram avaliadas as características demográficas e os sintomas clínicos, em todos participantes. Para a análise da microbiota intestinal e da concentração de histamina, amostras de fezes foram auto-colhidas em frascos estéreis e armazenadas a -80 ◦C até suas análises. O sequenciamento da microbiota intestinal foi avaliado pela técnica 16S rRNA (região V3-V4) e os dados foram analisados pelo banco de dados EzBioCloud.

No grupo HIT, queixas gastrintestinais e neurológicas foram relatadas por 83% dos participantes, seguidos por queixas dermatológicas (50%) e respiratórias (33%). No geral, os sintomas mais frequentemente relatados foram distensão abdominal e dor de cabeça, seguidos de flatulência, diarreia, azia e dores abdominais, musculares e articulares. A atividade plasmática da DAO foi deficiente (<10 U/mL) em 10 dos 12 participantes do grupo HIT.

A microbiota intestinal dos grupos HIT e controle foi analisada e comparada em termos de filo, família, gênero e espécie. A presença de disbiose intestinal foi observada no grupo HIT, que, em comparação com ao grupo controle, apresentou menor proporção de bactérias relacionadas à saúde intestinal: Prevotellaceae, Ruminococcus, Faecalibacterium e Faecablibacterium prausnitzii. Grupo HIT também apresentou abundância significativamente maior de bactérias histaminogênicas, incluindo os gêneros Staphylococcus e Proteus, gêneros não identificados pertencente à família Enterobacteriaceae, e as espécies Clostridium perfringens e Enterococcus fecalis.

Os autores concluíram que a maior abundância de bactérias histaminogênicas favoreceu o acúmulo de altos níveis de histamina no intestino e foi associado com efeitos adversos da intolerância. Contudo, as limitações do estudo devem ser levadas em conta em estudos futuros que visem elucidar a relação entre disbiose intestinal e intolerância à histamina.

Por Priscila Garla

Referência: Sánchez-Pérez, S.; Comas-Basté, O.; Duelo, A.; Veciana-Nogués, M.T.; Berlanga, M.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Intestinal Dysbiosis in Patients with Histamine Intolerance. Nutrients 2022, 14, 1774. https://doi.org/10.3390/nu14091774

quarta-feira, 4 de maio de 2022

Programação do curso de Nutrologia básica para acadêmicos de medicina

 2022 ficará marcado na minha vida, como um ano em que tirei do papel um plano antigo. O curso de nutrologia básica voltada para acadêmicos de medicina. Totalmente gratuito, EAD e com uma equipe de peso. 

Confesso que não imaginei que teria tantos amigos dispostos a me ajudar e contribuir dando aula gratuitamente. É muito bom saber que há pessoas que lutam pela especialidade e que vêem no curso uma oportunidade para se ensinar a real nutrologia. 

A grande maioria das faculdades não ensinam praticamente nada de nutrição para estudantes de medicina e isso, em pleno século XXI. O objetivo do curso é preencher essa lacuna. Por isso decidimos que o curso ocorrerá a cada dois anos e sempre gratuito, para acadêmicos de todo o país, do 5º ao 10º período. Tendo sempre 2 anos de duração, para não ficar pesado para os acadêmicos e nem para os médicos que estarão ministrando.

Na ideia inicial propus um curso de 25 horas, para 100 alunos. Posteriormente a procura foi tão grande que ofertamos 150 vagas e dobramos a carga horária. E agora em Abril de 2022 decidimos que o curso teria: 250 vagas. Todas preenchidas. Uma programação melhor que a de muita pós-graduação de Nutrologia.

Meus agradecimentos ao pessoal do GANEP, que cedeu 28 voucher pro congresso Ganepão (gratuitamente), à USP-RP que cedeu 250 inscrições gratuitamente do Congresso de Obesidade (CIOTEN) e à Associação Brasileira de Nutrologia que cederá 25 inscrições para o Congresso Brasileiro de Nutrologia.

A programação do Curso será:

MÓDULO 1: AGOSTO/2022 

05/08/22 - Sexta
19:00: Introdução à Nutrologia – Dr. Frederico Lobo – Médico Nutrólogo
20:00: Nutrologia e ética – Dra. Karoline Calfa – Médica Nutróloga e Conselheira do CRM-ES
21:00: Nutrologia e perícia judicial – Dr. Cristopher Celintano – Médico perito judicial  

06/08/22 - Sábado 09:00: Necessidades energéticas básicas – Dr. Frederico Lobo – Médico Nutrólogo
10:00: Avaliação do estado nutrológico – Dra. Márcia Beretta – Médica Nutróloga
11:00: Anamnese nutrológica – Dr. Frederico Lobo – Médico Nutrólogo
14:00: Exame físico em Nutrologia – Dr. Lucas Vaz – Médico especializando de Nutrologia (HFR)
15:00: Métodos de avaliação corporal (Bioimpedância, DEXA) e gasto energético (Calorimetria indireta) – Dr. Edvaldo Guimarães Jr – Médico Nutrólogo

07/08/22 - Domingo
08:00: Macronutrientes – Dra. Nayara Dourado – Médica Nutróloga 
09:30: Vitaminas C – Dra. Sabrina Barros – Médica Nutróloga
10:00: Vitaminas B1 e B2 – Dr. Frederico Lobo – Médico Nutrólogo
10:30: Vitaminas B3, B5 e B6 – Dr. Frederico Lobo – Médico Nutrólogo
11:00: Vitaminas Ácido fólico e B12 – Dr. Frederico Lobo – Médico Nutrólogo
14:00: Vitaminas A, E, k – Dr. Frederico Lobo – Médico Nutrólogo e Dra. Juliany Luz – Médica Nutróloga e especialista em Medicina de família
15:00: Vitamina D – Dra. Isabella Lacerda Marx – Médica R4 de Nutrologia 
16:00: Cálcio – Dr. Lucio Vieira – Médico endocrinologista
17:00: Ferro – Dr. Audie Nathaniel Momm – Médico Nutrólogo e Nutricionista 
18:00: Magnésio – Dr. Frederico Lobo – Médico Nutrólogo
18:30: Zinco – Dra. Elza de Mello – Médica Nutróloga, Pediatra, Gastropediatra e Nutricionista
19:00: Microminerais – Cobre – Dr. William Macedo Faria – Médico R4 de Nutrologia 
19:30: Microminerais – Selênio, Cromo, Manganês – Dra. Brenda Prates – Médica Nutróloga

10/08/22 - Quarta
19:00: Fibras alimentares – Dra. Nayara Dourado – Médica Nutróloga
20:00: Experiência como residente ou especializando em serviços de Nutrologia reconhecidos pela ABRAN
Dr. Plinio Augusto Moreira – Médico cirurgião geral e estagiário em Nutrologia (HCFMUSP-SP)
Dra. Julia Pacheco – Médica R4 de Nutrologia (IGESP – SP)
Dra. Isabella Lacerda Marx – Médica R4 de Nutrologia (Hospital Felício Rocho – BH)
Dr. Hiago Amorim – Médica Especializando (IAMSPE – SP)

MÓDULO 2:  DEZEMBRO/2022 

02/12/22 - Sexta
19:00: Triagem nutricional, risco nutricional e fisiopatologia do doente crítico – Dra. Simone Silvestre – Médica Nutróloga com área de atuação em Nutrição enteral e parenteral. 
21:00: Dispositivos para terapia nutricional – Dr. Alexandre Matos – Médico Nutrólogo

03/12/22 - Sábado
09:00: Sinais e sintomas de déficit nutricional – Dr. Frederico Lobo – Médico Nutrólogo
14:00: Nutrição enteral: indicações contraindicações, complicações – Dr. Alexandre Matos – Médico Nutrólogo
16:00: Nutrição parenteral: indicações contraindicações, complicações – Dr. Alexandre Matos – Médico Nutrólogo

04/12/22 - Domingo
14:00: Grandes queimados, pancreatite aguda – Dr. Alexandre Matos – Médico Nutrólogo 

MÓDULO 3: FEVEREIRO/2023 

03/02/23 - Sexta
19:00: Diabetes mellitus – Dra. Tatiana Abrão – Médica Nutróloga, Endocrinologista e especialista em Clínica Médica
21:00: Síndrome metabólica – Dr. Luiz Viola – Médico Nutrólogo, Endocrinologista e especialista em Clínica Médica
21:30: Esteatose hepática não-alcoólica – Dr. Luiz Viola – Médico Nutrólogo, Endocrinologista e especialista em Clínica Médica

04/02/23 - Sábado
08:00: Acolhimento do paciente portador de obesidade – Dr. Bruno de Andrade – Médico Nutrólogo
09:00: Conceito e epidemiologia da Obesidade - Dr. Frederico Lobo – Médico Nutrólogo
09:30 – Diagnóstico, Classificação e Complicações da obesidade – Dr. Frederico Lobo – Médico Nutrólogo
11:00 – Fisiopatologia da Obesidade – Dr. Luiz Viola – Médico Nutrólogo, Endocrinologista e especialista em Clínica Médica
14:00 – Tratamento dietético da obesidade – EM ABERTO
15:00 – Atividade física na obesidade – Dr. Lucas Vaz – Médico especializando de Nutrologia (HFR)
16:00 – Tratamento medicamentoso da obesidade – Dra. Julia Pacheco – Médica R4 de Nutrologia (IGESP – SP)
17:00 – Tratamento cirúrgico da obesidade – Dr. Plínio Fonseca – Médico cirurgião geral e R4 de Nutrologia

05/02/23 - Domingo
09:00: Nutroterapia nas alterações da pele e fâneros – Dr. Jyean Muchon – Médico R4 de Nutrologia
10:00: Nutrologia e gestação – Dra. Alessandra Bedin – Médica Nutróloga, Ginecologista e Obstetra
11:00: Hipertensão arterial sistêmica – Dra. Ana Valéria Ramirez – Médica Nutróloga
14:00: Dislipidemias – Dra. Giseli Albach Lenz - Médica Nutróloga
15:00: Desnutrição – Dr. Pedro Dal Bello – Médico Nutrólogo e Oncologista clínico
16:00: Sarcopenia e Caquexia – Dr. Pedro Dal Bello – Médico Nutrólogo e Oncologista clínico

MÓDULO 4: AGOSTO/2023 

04/08/23 - Sexta
19:00: Cafeína, Whey Protein, Creatina – Dr. Limiro Silveira – Médico Nutrólogo
21:00 – Composição corporal e contraceptivos – Dr. Ênio Damaso – Médico Nutrólogo, Ginecologista e Obstetra

05/08/23 - Sábado
09:00: Intolerâncias alimentares – Dr. Frederico Lobo – Médico Nutrólogo
10:00: Síndrome do intestino irritável – Dr. Frederico Lobo – Médico Nutrólogo
11:00: Constipação intestinal – Dra. Beth Hong – Médica Nutróloga
14:00: Disbiose intestinal – Dr. Frederico Lobo – Médico Nutrólogo
16:00: Nutrologia e processos éticos profissionais – Dra. Giovana Rassi – Advogada e especialista em Direito Médico

06/08/23 - Domingo
09:00: Hiperuricemia e gota – Dra. Aritana Alves – Médica Nutróloga
10:00: Litíase renal – Dra. Aritana Alves – Médica Nutróloga
14:00: Doença renal crônica – Dra. Aritana Alves – Médica Nutróloga
15:00: Hepatopatias e Nutrologia – Dr. Alexandre Matos – Médico Nutrólogo
16:00: Oncologia nutrológica – Dr. Pedro Dal Bello – Nutrólogo e Oncologista clínico

MÓDULO 5: NOVEMBRO/2023 

10/11/23 - Sexta
19:00: Doença celíaca – Dra. Livia Brito – Médica Nutróloga
20:00: Jejum intermitente – Dra. Juliany Luz – Médica Nutróloga e especialista em Medicina de família e comunidade
21:00: Mitos em Nutrologia – Dr. Guilherme Araújo – Médico Nutrólogo

11/11/23 - Sábado
09:00: Psiquiatria Nutricional, neurotransmissores e estilo de vida – Dr. Alexandre Pinto Azevedo – Médico Psiquiatra
14:00: Anorexia e Bulimia – Dra. Amanda Weberling – Médica Nutróloga
15:00: Compulsão alimentar – Dra. Amanda Weberling – Médica Nutróloga
16:00: Ortorexia, Vigorexia – Dr. Luiz Barbosa Neto – Médico Nutrólogo

12/11/23 - Domingo
09:00: Alimentos funcionais – Rodrigo Lamonier – Nutricionista 
10:00: Reducitarianismo,Vegetarianismo e veganismo – Dr. Luiz Barbosa Neto – Médico Nutrólogo 
14:00: Nutrologia comportamental – Dra. Edite Magalhães – Médica especialista em Clínica Médica
15:00: Anemias carenciais – Dra. Edite Magalhães – Médica especialista em Clínica Médica
16:00: Nutrologia na ESF – Dra. Juliany Luz – Médica Nutróloga e especialista em Medicina de família e comunidade e Dr. Leandro Houat – Médico especialista em Medicina de família e comunidade

Espero de coração que os alunos gostem e apliquem os conhecimentos após formarem.

quarta-feira, 6 de abril de 2022

Omeprazol e o perigo do uso crônico e irracional dos IBPS

Ele é conhecido por ter mil e uma utilidades: O famoso Omeprazol, faz parte da família dos IBP’s (inibidores de bomba de prótons) - classe que atua reduzindo entre 80-95% da produção diária de ácido gástrico. Essa classe é uma das mais prescritas no mundo, por vezes usadas de forma crônica e sem acompanhamento médico. 

Atualmente dispõe-se dos seguintes IBP’s: omeprazol, lansoprazol, dexlansoprazol, rabeprazol, pantoprazol e esomeprazol. São indicados para tratamento de: Doença do Refluxo Gastroesofágico, Doença ulcerosa péptica, erradicação de H. pylori (associado a antibióticos). 

Qual o grande problema de seu crônico? Nada existe por acaso no nosso corpo e com o seu estômago não seria diferente. O ácido gástrico funciona, principalmente, como um mecanismo de defesa contra microorganismos , podendo aumentar a suscetibilidade do paciente a inúmeras infecções entéricas, incluindo sobrecrescimento bacteriano no intestino delgado. Pode gerar reações adversas como: disbiose, gastrite atrófica, diarreia, náuseas, exantema, tontura, dores musculares, tontura e ginecomastia. 

Além disso, podemos ter algumas deficiências nutrológicas diretas como déficit na absorção de vitamina B12, ferro e magnésio. Pode também interferir na absorção de cálcio - metabolismo ósseo, aumentando risco para osteopenia, osteoporose e fraturas ósseas. Grande estudo do JAMA publicado em 2014, estudou a relação do uso crônico dos inibidores de bomba de prótons com déficit de vitamina B12, podendo contribuir para sintomas demenciais em idosos. 

Existem também estudos incipientes, tentando relacionar o uso crônico dos IBP’s com o aumento da incidência de neoplasias gástricas, principalmente pela hipergastrinemia (estimula a produção de ácido gástrico). A hipergastrinemia, a curto prazo, pode causar acidez rebote e, a longo prazo, hiperplasia de células carcinoides. Porém, esses mesmos estudos, apresentam vieses e fatores confundidores, o que faz com que questionemos suas reais validades.


Autora: Dra. Edite Magalhães - Médica especialista em Clínica Médica - CRM-PE 23994 - RQE 9351
Revisores: 
Dr. Frederico Lobo - Médico Nutrólogo - CRM-GO 13192 - RQE 11915
Dr. Leandro Houat - CRM-SC 27920 - RQE 20548 - Médico especialista em Medicina de família e comunidade

terça-feira, 21 de dezembro de 2021

Meu exame de frutose deu positivo e agora ?

O exame sanguíneo de frutose só mostra se você absorveu ou não a frutose. Ele não mostra a intolerância. 

Logo, o fato desse exame sanguíneo trazer um resultado positivo NÃO determina que você terá que excluir todas as frutas da sua alimentação! 

Caso você tenha sido orientado a eliminar as frutas de forma permanente, apenas por meio da leitura desse exame, procure uma segunda opinião de um Nutrólogo e/ou Gastroenterologista, além de um Nutricionista com experiência nessa área para te auxiliar.

Além disso, o teste sanguíneo (esse que você fez e teve que beber um líquido "horrível"😂 antes de realizar a coleta do sangue), não é o método mais adequado para o diagnóstico da intolerância hereditária à frutose, que é uma condição considerada rara. O exame correto é a Biópsia do fígado para dosagem da atividade da enzima do gene ALDOB ou o teste de tolerância, onde o paciente é injetado com frutose e seus sintomas e níveis de frutose e derivados são monitorados. No caso de bebês pode ser feito o teste da bochechinha.

Quando se suspeita de má-absorção da frutose: condição que cursa com gases, distensão abdominal, diarréia, dor abdominal, o exame correto se chama teste do hidrogênio expirado, que deve ser solicitado/avaliado pelo seu Médico para diagnóstico mais assertivo.

No mais, os sintomas que levam a busca incessante pelo diagnóstico de intolerâncias alimentares, como a frutose e lactose, podem ocorrer em decorrência de inúmeros outros fatores, como:
  • Supercrescimento bacteriano do intestino delgado
  • Supercrescimento fúngico
  • Intolerância a outros carboidratos fermentáveis,
  • Disbiose intestinal, 
  • Doença inflamatória intestinal
  • Doença celíaca
  • Doença diverticular do colon
  • Síndrome do intestino irritável
  • Esofagite eosinofílica
  • Uso crônico e sem acompanhamento de determinados medicamentos: como os prazóis, corticóides, antiinflamatórios.
Lembre-se: nosso intuito após o diagnóstico de alguma intolerância alimentar NÃO é o de eliminar os alimentos da sua vida, mas sim, por meio de um trabalho investigo (duplo detetive), verificar quais você tolera e quais as quantidades que não geram sintoma. 

Ou seja, o trabalho é multidisciplinar: Médico + Nutricionista e o paciente deve colaborar durante a investigação. 

Autor: 
Rodrigo Lamonier - Nutricionista e Profissional da Educação física
Revisores: 
Dr, Frederico Lobo - Médico Nutrólogo - CRM 13192 - RQE 11915
Márcio José de Souza - Profissional de Educação física e Graduando em Nutrição. 

segunda-feira, 25 de outubro de 2021

[Conteúdo para médicos e nutricionistas] - Mecanismos de perda de peso após cirurgia de obesidade

Resumo

A cirurgia de obesidade continua sendo o tratamento mais eficaz para a obesidade e suas complicações.

A perda de peso foi inicialmente atribuída à diminuição da absorção de energia do intestino, mas desde então tem sido associada a um comportamento apetitivo reduzido e um gasto energético potencialmente aumentado.

Os mecanismos implicados que associam o rearranjo do trato gastrointestinal com esses resultados metabólicos incluem o controle central do apetite, a liberação de peptídeos intestinais, a mudança na microbiota e os ácidos biliares.

No entanto, a combinação exata e o tempo dos sinais permanecem em grande parte desconhecidos.

Nesta revisão, levantamos pesquisas recentes que investigam esses mecanismos e buscamos fornecer insights sobre questões não respondidas sobre como a perda de peso é alcançada após a cirurgia bariátrica, que pode eventualmente levar a intervenções de perda de peso não cirúrgicas mais seguras ou combinações de medicamentos com cirurgia.

• Pontos Essenciais

  1. A cirurgia de obesidade induz perda de peso significativa, mas os mecanismos exatos permanecem obscuros.
  2. Mudanças na seleção de alimentos ocorrem após a cirurgia de obesidade e esse mecanismo pode complementar a redução da fome e o aumento da saciedade.
  3. O aumento do gasto energético pode ser um mecanismo que contribui para a perda de peso, mas os relatórios são controversos.
  4. A secreção elevada pós-prandial de peptídeos intestinais anoréxicos é considerada um mediador chave do aumento pós-operatório observado na saciedade.
  5. A cirurgia de obesidade induz um aumento na riqueza da microbiota intestinal, que pode desempenhar um papel direto no controle da adiposidade regulando o metabolismo lipídico

INTRODUÇÃO

A cirurgia de obesidade nas últimas 6 décadas tem sido bem-sucedida não apenas em fornecer um meio de alcançar uma perda substancial de peso, mas também em nos dar muitos novos insights sobre a fisiopatologia da obesidade. 

A cirurgia de obesidade foi descrita pela primeira vez na década de 1960, quando foi observado que pacientes com gastrectomia subtotal por câncer perderam uma quantidade considerável de peso.

Várias modificações na técnica levaram ao primeiro bypass gástrico laparoscópico em 1994 e ao estabelecimento das 3 técnicas mais utilizadas na prática clínica atualmente.

As 2 principais abordagens que são amplamente realizadas atualmente são bypass gástrico em Y-de-Roux (RYGB) e gastrectomia vertical vertical (VSG).

O BGYR envolve a criação de uma pequena bolsa gástrica (~30 mL) que é anastomosada ao jejuno proximal, que foi transectado a 30 a 75 cm do ligamento de Treitz, para formar o “membro alimentar”. 

A continuidade do intestino é restaurada através de uma anastomose jejuno-jejunal entre o membro alimentar e o membro biliopancreático excluído aproximadamente 75 a 150 cm distal à gastrojejunostomia.

Como resultado, a comida contorna a maior parte do estômago, todo o duodeno e o jejuno proximal. 

VSG envolve dividir o estômago ao longo de seu comprimento vertical para criar uma manga e remover ~75% de seu volume.

Embora diminuindo em popularidade, a banda gástrica ajustável (AGB) envolve a colocação de um anel de silicone ao redor do estômago proximal, abaixo da junção gastroesofágica. A pressão do anel é ajustada através de fluido injetado ou retirado de uma porta subcutânea (5).

A eficácia não é a mesma entre os procedimentos, já que o BGYR e o VSG causam mais peso do que o AGB.

Os pacientes se beneficiam não apenas da perda de peso, mas mais vitalmente de melhorias no controle glicêmico, redução da morbidade e mortalidade cardiovascular e redução da incidência de câncer.

Todos os 3 procedimentos não causam restrição mecânica com pouca ou nenhuma má absorção de macronutrientes. 

Em vez disso, a perda de peso se deve a mudanças na fisiologia da regulação do peso corporal.

Nesta revisão, exploraremos os mecanismos biológicos subjacentes à perda de peso. 

Não discutiremos os mecanismos subjacentes às melhorias glicêmicas/metabólicas, pois eles estão fora do escopo já amplo desta revisão. O impacto da cirurgia de obesidade no metabolismo parece ser predominantemente devido à perda de peso substancial e sustentada, mas dado o grande número de mecanismos que não estão relacionados à perda de peso, esperamos que o resultado metabólico benéfico em nível individual possa ser um composto da perda de peso, juntamente com mecanismos não relacionados à perda de peso.

Vamos nos concentrar em estudos mecanicistas em humanos e modelos animais com foco em BGYR, VSG e AGB, pois são as operações mais comumente realizadas. 

Embora os dados em animais nem sempre se apliquem a humanos, eles também levantam novas questões que podem ser respondidas em humanos e respondem a perguntas que não podem ser respondidas em humanos.

  • Mecanismos Subjacentes à Perda de Peso Após Cirurgia de Obesidade (RYGB, VSG, AGB)
  • Comportamento Alimentar
  • Redução na ingestão de energia

A teoria do setpoint apoia a noção de que a trajetória de peso corporal de um indivíduo durante a vida é predominantemente influenciada por sua composição genética, que interage com fatores não biológicos (por exemplo, sociais, psicológicos) para determinar o fenótipo final . 

Qualquer perda de peso abaixo ou acima do setpoint é percebida como um sinal de alarme pelas áreas do cérebro que regulam a ingestão e o gasto de energia, como o hipotálamo e o tronco cerebral.

Essas áreas estão localizadas nas áreas subcorticais do cérebro envolvidas na função automatizada, como respiração ou temperatura corporal. 

O hipotálamo e o tronco cerebral recebem sinais humorais e neurais contínuos e altamente precisos do tecido adiposo, estômago, intestino e pâncreas em relação aos estoques de energia corporal e à ingestão aguda de energia, respectivamente. 

Após a perda de peso, esses mensageiros mudam e sinalizam o esgotamento dos estoques de energia corporal, o que é desvantajoso do ponto de vista evolutivo. 

O caminho comum final desse mecanismo é a defesa do ponto de ajuste do peso corporal do indivíduo através de um aumento da fome e redução da saciedade, o que desencadeia as áreas de função executiva localizadas nas áreas corticais do cérebro para buscar e consumir alimentos.

Um bom exemplo de como esse sistema é ativado é a perda intencional de peso através de dietas restritivas calóricas. 

Pessoas em restrição calórica grave frequentemente relatam uma diminuição na fome e aumento na saciedade durante a fase aguda do balanço energético negativo. 

No entanto, a grande maioria tem dificuldade em manter o peso que perdeu quando ele se estabiliza durante a fase de balanço de energia estável. 

Isso apesar das áreas corticais do cérebro que controlam a contenção alimentar trabalhar intensamente para manter o peso corporal perdido. 

O aumento da fome e a diminuição da saciedade sinalizada pelo hipotálamo/tronco cerebral resultam em um aumento na ingestão calórica, o que eventualmente leva ao reganho do peso perdido e, em muitos casos, ao estabelecimento de um novo ponto de ajuste maior do que a linha de base original.

Ciclos repetidos desse processo aumentam o ponto de ajuste do peso corporal, tornando progressivamente mais difícil alcançar a perda de peso sustentada.

Consequentemente, qualquer terapia bem-sucedida de perda de peso e manutenção deve ser sofisticada o suficiente, do ponto de vista biológico, para neutralizar esse elaborado sistema de regulação do peso corporal.

A cirurgia de obesidade provou ser biologicamente muito sofisticada e, portanto, é uma terapia eficaz. 

Semelhante à restrição calórica durante a fase de equilíbrio negativo agudo, os pacientes após a cirurgia relatam uma diminuição da fome e aumento da saciedade.

A principal diferença entre a cirurgia de dieta e obesidade é que, após a cirurgia, o ponto de ajuste do peso corporal é reduzido em aproximadamente 20% a 30%.

A manipulação do estômago e do intestino delgado resulta em alterações favoráveis nos sinais humorais e neurais do intestino ao cérebro que são propícias à manutenção desse setpoint de peso corporal recém-estabelecido.

A comparação dos relatos dos pacientes e do peso real durante a fase de platô da perda de peso durante a dieta vs cirurgia de obesidade é intrigante. 

Mesmo após a cirurgia, os pacientes relatam um aumento “alarmante” na fome e diminuição da saciedade durante a fase de balanço energético estável e, de fato, isso se traduz tanto em maior ingestão de energia durante as refeições quanto em um aumento na frequência de refeições.

No entanto, o peso corporal aumenta apenas marginalmente e nunca atinge o valor pré-operatório na maioria dos casos. 

Enquanto neste novo setpoint, a intensidade dos sentimentos internos de fome e saciedade pode retornar a níveis quase pré-operatórios, a sinalização alterada do intestino atua continuamente para reduzir a ingestão total de energia durante um período de 24 horas, a fim de defender robustamente o novo normal.

Pacientes que perdem peso através da farmacoterapia (por exemplo, com agonistas do receptor do peptídeo 1 semelhante ao glucagon [GLP-1]) relatam alterações muito semelhantes em seu apetite durante a fase aguda e crônica de sua jornada de perda de peso.

A única diferença é que o tamanho do efeito da farmacoterapia é menor do que o da cirurgia, e isso ocorre porque os medicamentos alteram apenas 1 ou algumas das vias de sinalização nos centros de apetite do cérebro.

A perda de peso após o desvio biliopancreático destaca ainda que os mecanismos pelos quais essas operações funcionam são fisiológicos e não de natureza “cognitiva”. 

Este procedimento é a operação mais eficaz para perda de peso, mas raramente realizada atualmente devido às complicações nutricionais graves associadas. 

O bypass intestinal muito longo neste procedimento resulta em má absorção franca de macronutrientes e perda de peso. 

Os centros de apetite cerebral detectam isso rapidamente e compensam aumentando a fome. 

Pacientes após o desvio biliopancreático geralmente consomem mais calorias em comparação com antes de sua operação. 

No entanto, mesmo essa hiperfagia não é suficiente para compensar a grave perda de calorias através do intestino, que é, portanto, o mecanismo dominante que causa a perda de peso.

• Correlatos neurais de redução na ingestão de energia.

O hipotálamo é uma área cerebral crítica que controla a ingestão e o gasto de energia por meio de 2 conjuntos de neurônios antagonistas: neurônios peptídeos relacionados à agouti (AgRP) para promover a fome e neurônios pró-opiomelanocortina (POMC) para promover saciedade (Fig. 1). 

O neuropeptídeo Y (NPY) é secretado pelos neurônios AgRP e é um fator orexígeno. A expressão gênica hipotalâmica de Agrp, Npy e Pomc muda após a cirurgia de BGYR, mas os achados não são consistentes e muitas vezes carecem de um modelo de restrição calórica pareado por peso. 

Os níveis de expressão de Agrp hipotalâmica em ratas obesas são regulados positivamente em comparação com controles enxutos, mas descem para níveis semelhantes aos animais magros após o BGYR. 

A expressão gênica de Pomc não muda. Um estudo recente investigou a expressão de NPY hipotalâmico e AgRP em camundongos obesos, seguindo o BGYR e comparou os resultados com um modelo pareado por peso. 

Durante as primeiras 2 semanas de pós-operatório, quando o pico de perda de peso foi observado, a expressão hipotalâmica dos genes Agrp e Npy não aumentou em comparação com camundongos submetidos a cirurgia simulada, sugerindo que os sinais compensatórios de fome nos camundongos RYGB não foram ativados.

Em contraste, quando a mesma quantidade de perda de peso foi alcançada por restrição calórica em um grupo diferente de camundongos, observou-se aumento da expressão de Agrp e Npy. 

Vale ressaltar que a expressão de Pomc não foi alterada em um grau semelhante ao Agrp, indicando que o BGYR suprime a resposta adaptativa de fome desencadeada pela perda de peso.

Da mesma forma, o VSG não altera a expressão dos genes Npy e Agrp em ratos obesos 4 semanas após a cirurgia.

Um estudo que comparou ratos obesos tratados com VSG e AGB 6 semanas após a cirurgia mostrou que a expressão hipotalâmica de Npy foi significativamente menor e a expressão de Pomc foi significativamente maior no grupo VSG.

Dados os momentos pós-operatórios semelhantes, quaisquer discrepâncias entre os achados desses estudos sobre Agrp, Npy e Pomc podem ser devidas à tensão de roedores, diferenças, tipo de dieta e tempo de exposição e variações na técnica cirúrgica.

O tronco cerebral é o outro ator-chave na supressão da fome induzida pela cirurgia de obesidade. 

O forte impulso orexígeno decorrente de neurônios arqueados AgRP/NPY pode resultar em parte da inibição de um circuito de anorexia alimentar igualmente forte organizado ao redor do núcleo parabraquial lateral e tronco cerebral.

A medição da ativação neuronal induzida por refeição por meio de c-Fos em camundongos obesos mostrou que o circuito de anorexia de tronco cerebral pode ter um papel potencial nas alterações neurais e comportamentais adaptativas envolvidas na forte supressão precoce da ingestão de energia após o BGYR.

Esses achados de modelos animais apoiam as observações de humanos em que a direção da mudança na expressão de neuropeptídeos no hipotálamo e tronco cerebral após BGYR e VSG é oposta à dieta e favorece a manutenção de um ponto de ajuste de menor peso corporal.

• Sinalização neural.

Acredita-se que o mecanismo de ação do AGB seja exclusivamente através da sinalização vagal. 

A injeção de fluido através da porta subcutânea aumenta a pressão extraluminal sobre as aferências vagais, enviando um sinal anorexígeno para o tronco cerebral, mesmo no estado de jejum.

Esse mecanismo é ainda mais exagerado através do aumento da pressão intraluminal fundal exercida pelo consumo de alimentos, levando à saciedade precoce durante uma refeição. 

É comum que os profissionais de saúde injetem progressivamente mais líquido no AGB em pacientes que não perdem peso suficiente. Isso eventualmente leva a restrições mecânicas e vômitos. Esta é uma complicação evitável que deve ser evitada e, em vez disso, uma decisão precoce deve ser tomada para remover o AGB em pacientes que não respondem. 

Mais pacientes não respondem ao AGB em comparação com o BGYR/VSG porque o AGB ativa apenas 1 sistema de sinalização para o cérebro, em oposição à infinidade de sinais anorexígenos após o BGYR/VSG. 

Um estudo em ratos sugeriu que os sinais transmitidos por aferências vagais do intestino delgado médio e inferior contribuem para a perda de peso corporal precoce induzida pelo BGYR e redução da ingestão de alimentos.

A interrupção das aferências vagais e/ou eferentes ocorre durante a cirurgia de BGYR e VSG; se isso afeta o apetite e a perda de peso pós-operatória ainda não está claro. 

Alguns estudos sugeriram que a técnica cirúrgica de poupação vagal afeta a perda de peso corporal em roedores e, portanto, o nervo vagal deve ser preservado durante a operação de bypass gástrico.

No entanto, existem dados limitados sobre o papel da dissecção do nervo vago no BGYR e VSG em relação ao peso corporal em humanos.

• Seleção de alimentos

Após a cirurgia de BGYR e VSG, mas não BGY, alguns pacientes também alteram sua seleção de alimentos.

Isso inclui uma mudança de preferência de alimentos doces e gordurosos com densidade energética para opções menos densas em energia. 

A maioria das pesquisas nessa área usou medidas indiretas de comportamento, como questionários, diários alimentares e relato verbal em sessões de memória. 

Embora estes tenham sugerido que a redução do consumo de alimentos densos em energia possa ser um mecanismo adicional de perda de peso após a cirurgia, eles também demonstraram grandes variações na resposta e heterogeneidade substancial nos achados.

Isso é particularmente perceptível nas medições de longo prazo do comportamento alimentar, 5 a 10 anos após a cirurgia, quando quaisquer mudanças precoces na seleção de macronutrientes tendem a se dissipar.

Apenas um pequeno número de estudos usou medidas diretas do comportamento alimentar, ou seja, observar as escolhas do participante durante uma refeição ad libitum ou uma tarefa de comportamento alimentar. 

As melhores evidências até agora sugerem que os pacientes que perderam mais peso foram aqueles que consumiram um menor percentual de alimentos com baixo índice glicêmico e baixo índice glicêmico, e maior percentual de proteína como proporção à sua ingestão calórica diária total.

A redução nas propriedades gratificantes dos alimentos é um dos mecanismos que sustentam as mudanças na seleção de alimentos (Fig. 2). 

Esse mecanismo tem sido investigado usando neuroimagem funcional. Os exames de ressonância magnética funcional e tomografia por emissão de pósitrons fornecem informações tanto sobre a direção da mudança quanto as áreas do sistema de recompensa cerebral que se correlacionam com as mudanças no comportamento alimentar observado ou relatado. 

Apesar das discrepâncias entre os estudos, há algum acordo de que há uma redução na ativação de áreas cerebrais que respondem às pistas envolvidas com propriedades gratificantes (por exemplo, fotos de alimentos) após BGYR e VSG.

O tamanho do efeito dessa redução é mais pronunciado após o BGYR em comparação com o VSG.

Os hormônios intestinais são mediadores subjacentes a essa observação, já que o bloqueio reverte parcialmente a redução na ativação dessas regiões cerebrais.

Isso está de acordo com dados animais e humanos que demonstram que hormônios intestinais, como o peptídeo-1 semelhante ao glucagon (GLP-1) e o peptídeo YY (PYY), não apenas reduzem a fome e aumentam a plenitude, mas reduzem as propriedades gratificantes dos alimentos através de sua ação direta em seus receptores em áreas de recompensa cerebral.

Deve-se notar que os achados funcionais de neuroimagem devem ser interpretados com alguma cautela, pois medem apenas correlatos neurais do comportamento alimentar, não do comportamento em si. 

Os paradigmas disponíveis também não permitem granularidade suficiente sobre se as respostas cerebrais medidas às imagens alimentares refletem um comportamento apetitoso ou consumatório.

A função gustativa alterada é outro mecanismo subjacente às mudanças na seleção de alimentos após BGYR e VSG. 

Com relação ao domínio sensorial do paladar, a acuidade para o sabor doce é aumentada apenas no pós-operatório imediato.

Portanto, é improvável que seja responsável por efeitos a longo prazo. Alterações seletivas no valor de recompensa apetitiva do sabor doce/gordurosa também foram relatadas em humanos 3 meses após o BGYR e o VSG, ou seja, durante a fase aguda do balanço energético negativo, mas esses achados não foram replicados em modelos animais de BGYR durante a fase de balanço energético estável.

A medição válida do valor de recompensa consumatória do paladar é desafiadora em humanos, pois depende inteiramente do uso de medidas indiretas, como uma escala analógica visual. 

Estudos usando uma escala analógica visual após a cirurgia do BGYR mostraram resultados discrepantes.

Há mais consistência na literatura de roedores, na qual as respostas orofaciais, um bom marcador de respostas consumatórias, aumentam para baixas concentrações de glicose e diminuem para altas concentrações de glicose após o BGYR.

O terceiro domínio da função gustativa é denominado preparação digestiva e a salivação é um marcador dessa resposta reflexa aos tastants. 

As taxas de salivação se correlacionam com os aspectos gratificantes do tastant e as pessoas com obesidade demonstram maiores taxas de salivação para controles de peso normal.

Tentativas foram feitas para medir as taxas de salivação após a cirurgia de obesidade, mas com resultados mistos.

A experiência do nosso grupo com a medição das taxas de salivação em humanos é que as metodologias disponíveis sofrem de baixa reprodutibilidade (dados não publicados).

A sinalização neural também contribui para mudanças no valor gratificante de gordura e açúcar após a cirurgia. 

Isso foi investigado em ratos obesos submetidos ao BGYR, pois foram encontrados produzem menos da molécula de saciedade gorda oleoiletanolamida no intestino delgado, e esse efeito foi associado a aumentos impulsionados pelo nervo vago na liberação de dopamina estriatal dorsal.

A inibição da sinalização local do receptor de dopamina-1 estriatal local de oleoileo, vagal e estriatal foi inibida, os efeitos benéficos do BGYR na ingestão de gordura e preferências foram revertidos.

A sinalização neural pós-ingestiva, na forma do que é amplamente conhecido como síndrome de dumping, pode contribuir para as reduções subjacentes no alto índice glicêmico ou alimentos gordurosos após o BGYR, e menos ainda após o VSG. 

Os pacientes relatam sensações desagradáveis de náuseas, sudorese e tonturas logo após o consumo de alimentos açucarados ou gordurosos, o que em algumas pessoas pode resultar em evitar o paladar condicionado.

Durante esse processo de aprendizado, esses sintomas desagradáveis são presumivelmente gerados através de deslocamentos osmóticos entre o intestino e a circulação e sinalização neural alterada. 

Esses sintomas geralmente estão associados à ingestão de alimentos específicos. Isso não leva à extinção completa desses alimentos do consumo regular, ou seja, aversão, mas sim sua evitação. 

Assim, os alimentos permanecem agradáveis ao sujeito, mas somente quando consumidos em quantidades menores.

Deve-se notar que a síndrome de dumping não está presente em todos os pacientes após o BGYR e pode ser que seu impacto se dissipa ao longo do tempo. Isso pode ser devido à adaptação intestinal que continua ocorrendo por anos após a cirurgia. O dumping é menos comum após VSG e AGB, operações que não envolvem bypass duodenal.

No geral, os dados disponíveis sugerem que as mudanças na seleção de alimentos ocorrem em uma proporção de pessoas após o BGYR e VSG, mas não após o GBA. 

No primeiro, esse mecanismo poderia complementar a redução da fome e o aumento da saciedade para causar perda de peso adicional. 

Se esse mecanismo persiste ao longo do tempo ou se dissipa após a adaptação intestinal permanece incerto. 

O processo de aprender a evitar alimentos que geram efeitos postestivos desagradáveis tem um impacto maior do que a função gustativa na formação das preferências alimentares após a cirurgia. Algumas das perguntas não resolvidas acima poderiam ser respondidas usando estadias residenciais em instalações que permitem que o comportamento alimentar humano esteja o mais próximo possível do normal. 

Tais experimentos poderiam ser conduzidos precoce e tardiamente após a cirurgia e complementados por estudos em modelos animais de cirurgia.

• Despesas de Energia

O aumento do gasto energético após a cirurgia de obesidade pode ser um mecanismo contribuinte para a perda de peso. 

O gasto energético de repouso foi medido em humanos após o BGYR, e os estudos mais recentes usando calorimetria indireta mostram que o gasto energético de repouso diminui no primeiro ano de pós-operatório, permanece estável ou até mesmo aumenta ligeiramente.

Essas alterações são relatadas como altamente dependentes da composição corporal do tecido do órgão, já que os pacientes com BGYR mantêm uma alta taxa metabólica maior de massa orgânica do que os controles não operados.

Além disso, a perda aguda de peso após a cirurgia de obesidade afetou a precisão das equações preditivas de gasto energético.

Um pequeno número de estudos usou calorimetria indireta de 24 horas, um método ideal para medir a oxidação do substrato, porque cada indivíduo pode se mover livremente, consumir refeições e praticar atividade física. 

Um estudo relatou que o gasto energético induzido pela dieta em pacientes 20 meses após o aumento do BGYR, o que resultou em uma contribuição aumentada para o gasto energético total ao longo de 24 horas, de uma média de 12,9 cal/min/kg para 14,7 cal/min/kg, quando corrigido para massa total de tecido, incluindo tecido adiposo total, massa corporal magra 

Outro estudo não relatou alterações no gasto energético induzido por dieta de 24 horas 11 semanas após o BGYR, embora isso não tenha sido corrigido para a massa tecidual total.

Nove anos após o BGYR, os pacientes apresentaram maior gasto energético induzido por dieta e gasto energético total de 24 horas em média 16,9 cal/min/kg do que os pacientes com gastroplastia vertical com bandas, um procedimento semelhante ao AGB, com 14,9 cal/min/kg.

Em um período de acompanhamento mais curto, o gasto energético de 24 horas diminuiu significativamente desde o início para 8 semanas após o tratamento em pacientes submetidos a BGYR, VSG, AGB e dieta muito baixa caloria, após ajuste para diminuições na massa livre de gordura e massa gorda. 

No entanto, esse efeito persistiu até 1 ano somente após o BGYR e VSG (RYGB, -124 ± 42; VSG, -155 ± 118 kcal/dia).

Além disso, os pacientes submetidos a desvio biliopancreático (consistindo de uma gastrectomia horizontal com reconstrução distal em Y-de-Roux, resultando em um membro alimentar de 250 cm e um canal comum de 50-100 cm) demonstraram aumento da termogênese induzida pela dieta (11,0% no início para 19,9% da ingestão calórica) e relacionada à atividade física. 

Um mecanismo que pode contribuir para o aumento do gasto energético durante uma refeição em humanos pode ser o aumento da utilização de glicose pelo intestino delgado hipertrofiado.

No entanto, o gasto energético absoluto é reduzido após a cirurgia em humanos e o aumento do gasto energético expresso por massa corporal total pode ser pelo menos em parte explicado pela mudança na composição corporal (ou seja, aumento da relação massa magra/gorda).

O tipo de dieta também pode afetar as medições do gasto energético. 

Um ensaio clínico randomizado em pacientes após perda de peso induzida por dieta mostrou que a redução da ingestão dietética de carboidratos aumenta o gasto energético durante a manutenção da perda de peso.

No entanto, a metanálise de 32 estudos de alimentação controlada com substituição isocalórica de carboidratos por gordura descobriu que tanto o gasto energético quanto a perda de gordura são maiores com menor gordura dietética.

Ao contrário das observações em humanos, a maioria dos estudos em modelos de roedores do BGYR relata um aumento no gasto energético total quando comparado com shams alimentados ad libitum e shams combinados com peso. 

Isso foi medido em diferentes momentos pós-operatórios usando calorimetria indireta ou fórmulas matemáticas validadas.

O VSG parece não induzir nenhuma mudança no gasto total de energia.

No entanto, a calorimetria indireta produz um erro absoluto de até 38% quando comparada com a calorimetria direta padrão.

Um estudo recente usou uma combinação de calorimetria direta e indireta sensível para superar essa limitação e demonstrou um aumento no gasto energético de repouso após o BGYR, mas não o VSG.

O tecido adiposo marrom (BAT) é um dos principais players na regulação do metabolismo energético por termogênese e depuração de triglicérides e desempenha um papel nas mudanças no gasto energético após a cirurgia de obesidade. 

Uma diminuição no conteúdo de triglicérides, juntamente com o aumento da proporção de BAT no depósito de gordura supraclavicular, foi encontrada em mulheres 6 meses após o BGYR e o VSG.

No entanto, o papel das BAT no gasto energético após a cirurgia de obesidade tem sido estudado principalmente em roedores. 

A expressão de genes termorregulatórios BAT importantes, como a proteína-1 desacoplamento (UCP-1) permanece inalterada após o BGYR, mas está reduzida em animais pareados com peso com restrição calórico e que o duodeno ignorado tem um papel fundamental no perfil metabólico pós-operatório observado.

O volume e a atividade metabólica das BAT, registrados por tomografia por emissão de micropósitrons/tomografia computadorizada, aumentaram após o BGYR, mas não após o AGB e o VSG.

Um mecanismo proposto para a atividade metabólica das BAT é um aumento observado no hormônio do crescimento/fator de crescimento semelhante à insulina-1, que regula a diferenciação de adipócitos.

Ao contrário do VSG, o BGYR causa um aumento na taxa metabólica total de repouso, bem como um aumento específico na atividade do nervo simpático esplâncnico e “marrom” da gordura mesentérica visceral via sinalização endocanabinóide no intestino delgado.

Embora estudos in vivo sejam vitais para desvendar os mecanismos de diferença de gasto energético após a cirurgia de obesidade, é importante notar a diferença de espécies entre camundongos e ratos, bem como as diferenças de cepas em uma única espécie. 

Há também diferenças entre roedores e BAT humanas, em termos de localização de depósitos, tecido adiposo bege e quantidade de BAT e capacidade termogênica.

Apesar disso, o conteúdo e a função UCP1 são semelhantes entre BAT humana e de camundongo.

No geral, ainda não está claro a partir das evidências existentes em que medida, se é que, a perda de peso pós-operatória é impulsionada pelo aumento do gasto energético após BGYR e VSG vs restrição calórica dietética, já que o metabolismo energético está intimamente associado às mudanças de peso corporal. 

A discrepância nos valores de gasto energético relatados nos estudos discutidos pode de fato ser devida a diferenças na dieta, composição corporal do paciente e medição do gasto energético. 

Essas incertezas nos sugerem que a contribuição fisiológica do gasto energético para a perda de peso após BGYR e VSG é pequena em comparação com a contribuição dominante da ingestão energética reduzida.

• Mediadores Subjacentes a •Mudanças na Consumo e Despesas de Energia Após Cirurgia de Obesidade

• Hormônios intestinais

Os hormônios intestinais são secretados em resposta à ingestão de nutrientes e regulam o balanço energético e a homeostase da glicose, sinalizando para o pâncreas, mas também por ação direta e indireta no tronco cerebral e nos núcleos arqueados hipotalâmicos.

Dois hormônios intestinais anorexígenos que têm sido amplamente investigados após a cirurgia de obesidade são GLP-1 e PYY, que são secretados pelas células L enteroendócrinas em todo o trato gastrointestinal.

Tanto o GLP-1 quanto o PYY estão elevados pós-prandialmente após BGYR e VSG, e a secreção aumentada tem sido hipotetizada como um mediador chave do aumento pós-operatório observado na saciedade.

As concentrações de jejum não mudam significativamente, sugerindo que não são os mecanismos subjacentes à redução da fome.

A ausência de restrição mecânica no nível da anastomose gastrojejunal após o BGYR permite a rápida entrega de nutrientes ao jejuno e ao íleo, onde o maior número de células L enteroendócrinas (principalmente secretoras de GLP-1) está localizado, desencadeando a secreção aumentada de hormônios intestinais anorexígenos.

 Estes exercem sua ação no tronco cerebral/sistema hipotalâmico através da estimulação de aferências vagais intestinais e atravessando a barreira hematoencefálica. 

Apesar da ausência de bypass intestinal, acredita-se que o VSG envolva o mesmo mecanismo através do rápido esvaziamento do remanescente gástrico de alta pressão, criando assim um bypass intestinal funcional. 

No entanto, o aumento pós-prandial nos hormônios intestinais anorexígenos após a VSG é menor do que o observado após o BGYR.

Isso pode explicar diferenças na eficácia da perda de peso das 2 intervenções e no reganho substancial de peso após o VSG no acompanhamento a longo prazo. 

Apesar da rápida entrega persistente de nutrientes para o intestino delgado distal, não há diminuição compensatória no número de células L após o BGYR.

Em contraste, após a adaptação intestinal, o número de células L aumenta, amplificando ainda mais a sinalização anorexigênica. 

A densidade de células enteroendócrinas no intestino delgado distal não muda, pois o volume intestinal também aumenta através da hipertrofia.

O bloqueio combinado do GLP-1 e do PYY por infusão única de antagonistas aumenta a ingestão de energia, apontando para o papel supressor do apetite em humanos após o BGYR.

Esses achados estão de acordo com experimentos nos quais a administração do análogo de somatostatina octreotide após BGYR e ABG em humanos resultou na supressão da secreção pós-prandial de PYY e GLP-1 e redução na ingestão de energia apenas no grupo BGYR.

A infusão crônica do antagonista seletivo do receptor GLP-1 exendina-(9-30) no ventrículo cerebral lateral aumentou significativamente a ingestão de energia e o peso corporal em ratos RYGB e sham-operados, enquanto a infusão crônica de um antagonista seletivo do receptor Y2 não teve efeito em nenhum dos grupos.

No entanto, camundongos deficientes em GLP-1R obesos (GLP-1–/–) perderam a mesma quantidade de peso corporal e massa gorda e mantiveram um peso corporal igualmente menor do que camundongos selvagens, seguindo o BGYR.

Essa observação indica baixa importância do GLP-1R na regulação do apetite e isso foi confirmado bloqueando a ação periférica e central do GLP-1R em camundongos RYGB e sham obese usando exendina-(9-30), o que não reverteu o efeito de perda de peso do BGYR ou influenciou o ganho de peso corporal semanal em camundongos sham.

Da mesma forma, camundongos deficientes em receptores Y2 obesos (PYY-/–) também responderam de forma semelhante ao BGYR em comparação com camundongos selvagens por até 20 semanas após a cirurgia, com hipofagia inicial e perda de peso corporal sustentada. 

Camundongos knockout Y2-R pareados com peso mostraram as mesmas melhorias no BGYR que as observadas em camundongos selvagens, sugerindo que a sinalização PYY através do receptor Y2 por si só não é responsável pelos efeitos supressores de apetite e redução de peso corporal do BGYR.

No entanto, a administração aguda de exendina-(9-30) com um antagonista seletivo do Y2-R aumentou a preferência alimentar rica em gordura aditivamente em ratos obesos operados por BGYR, mas não em ratos obesos induzidos por dieta sham.

Isso está de acordo com estudos em humanos e indica um efeito diferencial de antagonistas quando administrados isoladamente vs em combinação, bem como agudamente vs infundidos cronicamente. 

Isso também contrasta um efeito adquirido associado à infusão de antagonistas em comparação com o estado genético associado à deficiência do receptor Y2 ou receptor GLP-1 em modelos knockout.

Estudos recentes se concentraram em 2 hormônios intestinais adicionais, oximomodulina e glicentina; produtos do gene pré-proglucagon também liberados do enteroendócrino em resposta ao trânsito alimentar. 

A oximomodulina é um agonista duplo dos receptores de glucagon e GLP-1 que pode atuar aditivamente no GLP-1 para reduzir a ingestão de alimentos e o apetite.

A sequência da proteína Glicentina contém a sequência de oximomodulina e, embora seu papel biológico ainda não esteja claro, hipotetiza-se que seja o mais estável dos peptídeos de proglucagon e, portanto, possa servir como o melhor marcador da secreção de hormônios das células L, como o GLP-1.

Os níveis pós-prandiais de oxintomodulina e glicentina aumentaram significativamente 3 meses após VSG ou BGYR, mas não após o AGB, em humanos, e essas concentrações elevadas foram positivamente associadas à sensação de saciedade e perda de peso.

Esses resultados foram posteriormente replicados por Nielsen et al., que relataram que níveis circulantes elevados de oximomodulina e glicentina previram perda de peso e estavam positivamente associados a uma diminuição da preferência por alimentos com densidade energética.

As alterações na concentração plasmática do hormônio orexígeno grelina após o BGYR permanecem controversas. 

Estudos em humanos demonstraram que os níveis hormonais estão aumentados, diminuídos ou permanecem os mesmos.

Os resultados dos estudos que medem a grelina após VSG estão demonstrando de forma mais consistente uma diminuição nas concentrações pós-prandial do hormônio.

Assim, a contribuição das reduções de grelina na perda de peso pode ser mais relevante após a VSG do que o BGYR.

• Ácidos Biliares

Há muito tempo se sabe que os ácidos biliares desempenham um papel importante na absorção lipídica dietética e no catabolismo do colesterol e demonstraram aumentar o gasto energético promovendo a ativação intracelular do hormônio tireoidiano.

A função do ácido biliar é mediada por 2 receptores intestinais primários, o receptor 5 da proteína G Takeda (TGR5) e o receptor X farnesoide A (FXR). Esses receptores estimulam a liberação pós-prandial dos fatores de crescimento de fibroblastos 19 e 21 (FGF19/21).

O FGF19 é liberado do intestino delgado pós-prandialmente e diminui a secreção ácida biliar, enquanto o FGF21 é secretado pelo fígado durante o jejum e tem um papel na manutenção da homeostase energética, além de controlar o metabolismo da glicose e lipídios (Fig. 3). 

Os níveis circulantes de FGF19 mostraram-se menores em pessoas com obesidade do que em indivíduos controle saudáveis, enquanto a administração de FGF19 humano em camundongos obesos induziu uma diminuição significativa dose-dependente da massa corporal, que foi associada a uma diminuição nas concentrações de triglicérides, bem como aumento da oxidação de ácidos graxos e massa de tecido marrom. 

Após a liberação do FGF19, o papel da ativação subsequente do receptor neuronal de FGF também foi associado à regulação do peso corporal, pois sinaliza um estado de energia repleto aos neurônios hipotalâmicos AgRP/NPY.

Em contraste, o FGF21 está elevado em pessoas com obesidade e camundongos obesos são insensíveis à administração exógena de FGF21, sugerindo que a obesidade é um estado resistente ao FGF21.

No entanto, a sensibilidade ao FGF21 é restaurada em humanos após a perda de peso.

Embora não estejam diretamente correlacionadas com a obesidade, as variantes do FGF21 estão associadas ao aumento do consumo de doces, já que os níveis plasmáticos de FGF21 aumentam agudamente após a ingestão oral de sacarose. 

Isso indica que o FGF21 pode influenciar o comportamento alimentar.

Os ácidos biliares totais e o FGF19 aumentam após BGYR e VSG em humanos e roedores.

Especificamente, os ácidos biliares séricos conjugados com glicina aumentaram agudamente após o BGYR em humanos, enquanto os ácidos biliares conjugados e não conjugados aumentaram após o VSG, um efeito não replicado em um grupo controle de restrição calórica não operado.

O aumento do ácido biliar é sustentado 5 anos após a cirurgia, com níveis mais altos associados a maior perda de peso e menor colesterol total.

Além de seu papel no aumento do gasto energético e na oxidação de ácidos graxos, acredita-se que os ácidos biliares tenham um efeito inibitório do apetite, pois estimulam a secreção de GLP-1 e PYY.

No entanto, os ácidos biliares séricos, a concentração de FGF19 e GLP-1 diminuíram em pacientes que alcançaram perda de peso induzida pelo estilo de vida, apontando ainda mais para o fato de que as mudanças no peso corporal induzidas pela dieta e cirurgia de obesidade são desencadeadas por diferentes mecanismos.

Existem discrepâncias em relação ao momento pós-operatório do aumento do ácido biliar, já que alguns estudos relatam um efeito agudo e outros observam um aumento gradual 1 ano após a cirurgia.

As concentrações de FGF21 após a cirurgia permanecem mais controversas entre diferentes estudos, possivelmente porque as mudanças de concentração e sensibilidade circulantes se mostram secundárias à perda de peso, que pode diferir amplamente.

Um corpo crescente de evidências sugere que os ácidos biliares circulantes atuam como moléculas sinalizadoras que controlam sua própria síntese e múltiplas vias metabólicas, visando o fator de transcrição FXR e a proteína de membrana TGR5. 

A FXR parece ser fundamental na perda de peso pós-operatória, pois controla a transcrição de genes envolvidos na síntese de ácidos graxos e triglicérides e no metabolismo de lipoproteínas e promove o escurecimento do tecido adiposo.

Estudos in vivo envolvendo ruptura genética de FXR em camundongos submetidos a VSG demonstraram que o receptor é um alvo molecular para efeitos benéficos da cirurgia, pois contribui para a manutenção da perda de peso após VSG. 

Especificamente, camundongos VSG knockout FXR consumiram mais energia do que controles sham-operados, sugerindo que a sinalização FXR é necessária para a repressão da hiperfagia rebote após a restrição calórica inicialmente alcançada pelo VSG.

Estudos em camundongos também investigaram o papel do receptor TGR5 na perda de peso pós-operatória, pois sua ativação pode aumentar a secreção de GLP-1 pós-prandial no intestino inferior.

Semelhante aos estudos de FXR, camundongos knockout TGR5 demonstraram perda de peso reduzida após VSG. 

Além disso, a análise da composição corporal não revelou diferenças entre camundongos selvagens do tipo TGR5 knockout sham e VSG 14 semanas após a cirurgia, indicando que o TGR5 é necessário para manter a perda de peso e a redução da massa gorda após o VSG.

Um possível mecanismo disso é uma separação mitocondrial impulsionada pelo TGR5 e turnover de tecido adiposo branco para bege, já que a administração de miméticos de ácido biliar seletivos para TGR5 a camundongos alojados termoneutros levou ao aparecimento de marcadores de adipócitos bege e a um aumento no conteúdo mitocondrial.

No entanto, nem todos os estudos relatam uma redução da perda de peso após VSG e BGYR em camundongos knockout TGR5.

Uma possível explicação para isso é a taxa de reganho de peso após a cirurgia de obesidade e, como resultado, o tipo e o tempo de exposição à dieta rica em gordura em camundongos pré-operatórios. 

A maioria dos estudos que investigaram o papel dos receptores TGR5 e FXR foi realizada em modelos animais, e seus papéis podem ser diferentes em humanos.

No geral, o papel dos ácidos biliares na perda de peso pós-operatória ainda não está totalmente compreendido. 

Como a extensão em que o gasto energético impulsiona a redução de peso após a cirurgia de obesidade ainda não está clara, a capacidade dos ácidos biliares de aumentar a secreção de GLP-1 e o papel do FGF19 nos neurônios hipotalâmicos AgRP/NPY indicam um efeito anoréxico indireto como o principal curso de ação após o  RYGB e VSG.

• Microbiota intestinal

A microbiota intestinal tem um papel vital tanto na colheita de energia quanto no gasto energético. Elas podem metabolizar carboidratos complexos indigestos por fermentação, levando à produção de ácidos graxos de cadeia curta, bem como controlar a absorção de nutrientes.

A microbiota intestinal também desempenha um papel na capacidade termogênica das BAT e no turnover de adipócitos beges, já que camundongos sem microbiota intestinal têm termogênese dependente de UCP1 prejudicada no frio, e a gavagem oral do metabólito bacteriano butirato foi capaz de resgatar o efeito com o recrutamento de BAT.

A obesidade é frequentemente caracterizada por disbiose intestinal, conforme definido por modificações substanciais na composição da microbiota intestinal e baixa riqueza gênica microbiana.

Firmicutes e Bacteroidetes são os 2 microfilos intestinais dominantes associados à obesidade, e a relação Firmicutes/Bacteroidetes se correlaciona com o aumento do peso corporal.

Juntos, esses filos representam 90% do microbioma, com os demais grupos separados principalmente em Actinobacteria, Proteobacteria e Verrucomicrobia.

Akkermansia muciniphila da classe Verrucomicrobia também foi correlacionada com obesidade em humanos.

O mecanismo pelo qual a cirurgia de obesidade atinge a perda de peso pode incluir alterações na microbiota intestinal. 

A transferência da microbiota intestinal de camundongos tratados com BGYR para camundongos não operados e livres de germes resultou em perda de peso e diminuição da massa gorda nos animais receptores quando comparados com os receptores da microbiota induzida por cirurgia simulada.

Em ratos transplantados com a microbiota do BGYR, essa diminuição na adiposidade e no peso corporal não foi associada a uma mudança na ingestão de alimentos, sugerindo ainda que a microbiota intestinal associada ao BGYR aumenta o gasto energético ou reduz a capacidade de colher energia dos nutrientes.

O transplante de fezes de pacientes após BGYR ou gastroplastia vertical em bandas para camundongos livres de germes promoveu redução da deposição de gordura e ganho de peso quando comparado a um grupo controle colonizado com fezes de pacientes com obesidade.

Camundongos colonizados com microbiota cirúrgica de obesidade também apresentaram um quociente respiratório mais baixo, indicando diminuição do uso de carboidratos como combustível.

Embora estudos em humanos tenham relatado diferenças na microbiota intestinal no pós-operatório, a extensão dessas alterações varia. 

Isso pode ser devido a critérios de inclusão do paciente, como estado de glicemia e medicação, mas também dieta e tipo de procedimento. 

No entanto, estudos em humanos demonstram consistentemente um aumento na diversidade, organização espacial e estabilidade da microbiota intestinal e, especificamente, nas Proteobactérias após BGYR (Tabela 1). 

A diversidade da microbiota intestinal é uma medida de quantas espécies diferentes existem e quão uniformemente distribuídas elas estão na comunidade intestinal, e a baixa diversidade é um sinal de disbiose.

Alguns estudos também relataram uma diminuição nos filos Firmicutes e Bacteroidetes em humanos e ratos após o BGYR.

O aumento na diversidade, estabilidade e resiliência da microbiota intestinal é importante, já que um grande número de associações entre a microbiota intestinal e a regulação gênica do tecido adiposo já 3 meses após a cirurgia foram relatadas, demonstrando ainda que a microbiota intestinal pode desempenhar um papel direto no controle da adiposidade regulando o metabolismo lipídico. 

Além disso, a microbiota intestinal leva à produção de ácidos graxos de cadeia curta, que estimulam a secreção de GLP-1 via receptor de ácido graxo livre-2 e, portanto, também podem reduzir a ingestão de energia.

Uma diminuição nas Proteobactérias foi registrada em pacientes após VSG e AGB.

Esse efeito diferencial entre VSG e BGYR pode ser resultado da exclusão duodenal no BGYR, já que o bypass duodenal-jejunal com ressecção gástrica mínima em ratos obesos aumentou a riqueza e a abundância microbiana quando comparados com ratos tratados com agonistas GLP-1R.

Isso também foi observado em humanos após o tratamento com o revestimento endoscópico duodenal-jejunal bypass.

A comparação do AGB, perda de peso induzida farmacologicamente e BGYR demonstrou que, em perda de peso semelhante, a maior alteração na diversidade da microbiota intestinal ocorreu após o BGYR.

Apesar do efeito positivo na perda de peso através de uma combinação de mecanismos discutidos acima, o BGYR é incapaz de reverter totalmente a diminuição da riqueza gênica microbiana intestinal e as alterações composicionais observadas em pacientes com obesidade.

Intervenções como transplante fecal de doadores magros para pacientes com obesidade revelaram que os efeitos benéficos para redução de peso estão ligados a alterações nos metabólitos plasmáticos e impulsionados pela composição basal da microbiota fecal.

Além disso, a alteração da diversidade da microbiota intestinal acelera o reganho de peso pós-dieta, sugerindo que as abordagens direcionadas ao microbioma podem ajudar a aumentar a perda de peso após a cirurgia ou prevenir o reganho de peso.

• Genética e Cirurgia da Obesidade

A seleção de pacientes para cirurgia (“medicina personalizada”) pode fornecer um refinamento adicional para os procedimentos existentes e pode levar à identificação de genes ou vias que podem fornecer alvos terapêuticos úteis. 

Estudos gênicos candidatos exploraram papéis para o receptor de melacocortina-4, revelando maior perda de peso em pacientes cuja obesidade é em parte impulsionada por mutações neste gene. 

Um estudo de associação genômica mais recente relatou 17 polimorfismos de nucleotídeo único na perda de peso 2 anos após o BGYR, implicando papéis para o receptor de 5-hidroxitriptamina 1A e outros genes. 

Não está claro se a força e o número dessas associações são substanciais o suficiente para fornecer poder preditivo.

• Conclusão

As manipulações anatômicas durante os procedimentos cirúrgicos de obesidade mais usados causam perda de peso por meio de mudanças na biologia do intestino. 

A sinalização alterada do intestino para o cérebro, o órgão responsável pela doença da obesidade, facilita a redução da ingestão de energia e, em algumas pessoas, mudanças na seleção de alimentos. 

O aumento ou a inalteração do gasto energético no contexto da perda de peso também pode contribuir para a defesa de um novo setpoint de peso corporal. 

Os mecanismos precisos subjacentes a essas mudanças profundas não são completamente compreendidos.

O desvendamento da fisiologia indescritível do intestino após a cirurgia ajudará a otimizar os procedimentos cirúrgicos, desenvolver terapias não cirúrgicas, abordar o reganho de peso após a cirurgia, mas também entender a fisiopatologia da própria doença da obesidade.

“Compartilhar é se importar”
Instagram:@dr.albertodiasfilho
EndoNews: Lifelong Learning
Inciativa premiada no Prêmio Euro - Inovação na Saúde